Current Issue : October-December Volume : 2025 Issue Number : 4 Articles : 6 Articles
Methanol synthesis from CO2 is a key strategy for carbon capture and utilization, offering a viable solution to mitigate climate change. The direct synthesis of methanol not only reduces greenhouse gases but also produces valuable chemicals for industrial applications. The aim of this study is to model and optimize the methanol synthesis process from CO2, focusing on maximizing methanol yield while minimizing CO2 content in the product stream. In this work, a detailed methanol synthesis process simulation was developed using the Soave–Redlich–Kwong equation of state in the Aspen Plus V11 commercial software environment. Pure CO2 streams, which are produced from the postcombustion carbon capture process, and renewable hydrogen streams were used. The results are compared with open literature sources. In addition, a sensitivity analysis was employed to evaluate the effects of the pressure, temperature, and recirculation fraction on process efficiency. The results showed that the highest methanol yield of 76,838 kg/h was obtained at 80 bar, 276 ◦C, and a recirculation fraction of 0.9. The lowest CO2 content in the final product (73 kg/h) occurred at 80 bar, 220 ◦C, and a recirculation fraction of 0.6. These findings demonstrate the trade-off between maximizing methanol output and reducing unreacted CO2. In conclusion, optimal operating conditions for both the high yield and low CO2 content were identified, providing a foundation for further process refinement. Future work will involve developing a more complex multi-reactor model and conducting economic assessments for large-scale industrial implementation....
The rise of advanced driver-assistance systems (ADAS) and electric vehicles has placed unprecedented demands on automotive semiconductor designs. This article explores simulation-centric methodologies tailored to meet the stringent safety and reliability requirements of the automotive industry. The article focuses on compliance with standards like ISO 26262 and emphasizes fault injection testing as a core component of the verification process. Mixed-signal simulations play a crucial role in validating interactions between analog and digital components, ensuring seamless integration in automotive ICs. By incorporating advanced reliability metrics and failure mode analysis, the framework addresses potential vulnerabilities early in the design phase. Case studies from powertrain and ADAS IC projects demonstrate how simulation-based verification tools have significantly reduced defect rates while accelerating time-to-market and ensuring compliance with industry standards....
As China’s urbanisation continues, the building area is expanding, of which the occupancy of rural residential buildings is also very large. However, most rural dwellings lack insulating structures and have poor thermal performance. This paper verifies and analyses the energy-saving potential of green façades for rural houses in northern China through comparative experiments as well as software simulations. The experiments were conducted from July to August 2024 to verify the reliability of the software simulations. And the simulation was carried out on an existing house in rural northern China. The experimental results show that the reference room consumes 1.84 times more electricity than the vertical greenery room, and the vertical greenery achieves a good energy saving of 45.75%. According to the simulated data, the building energy efficiency of rural houses in northern China after green façade retrofitting is obvious, the energy-saving rate reaches 14.94%, and 713.32 KWh of electricity can be saved in the whole cooling period....
The harmonic content of transformers used in the field of new energy is significantly higher than that of conventional transformers, leading to an abnormal increase in transformer loss during operation. Therefore, the loss characteristics of amorphous alloy transformers are investigated in this paper. First, a measurement platform for the magnetic property of transformer cores under sinusoidal excitation is developed. The magnetization characteristics, loss characteristics and loss composition of the amorphous alloy core under sinusoidal excitation are measured and analyzed. On this basis, the traditional Steinmetz loss calculation formula is modified, and the loss calculation formula is further refined by improving its coefficients to accommodate various frequencies. Secondly, using a field-circuit coupling method, a 3D model of the transformer core is established by finite element simulation. The magnetic flux distribution and core losses are computed under both sinusoidal excitation and non-sinusoidal excitation. Finally, the impact of core rotation magnetization on the magnetic flux density is considered, and experimental errors are minimized by applying an empirical formula. The numerical model validity and accuracy are verified by comparing the simulation results with experimental data....
As the core process of the thermal treatment of municipal solid waste (MSW), incineration process optimization has become a frontier topic in the field of environmental engineering. This study took a 500 t/d incinerator for engineering application as the research object. Based on a two-fluid model, a three-dimensional transient model of a proportional incinerator was established. The effects of primary air proportion and moisture content on the combustion state in the incinerator were verified and discussed using field test data, and the dynamic changes in flue gas temperature were predicted by a BPNN (Backpropagation Neural Network). The results show that the increase in air volume in the drying section promotes water evaporation but inhibits the devolatilization and combustion of fixed carbon. The position where complete devolatilization and fixed carbon combustion begins was delayed by 1.5 m~3 m. The moisture content (M) is negatively correlated with the devolatilization and combustion of fixed carbon. From M = 25% to M = 40%, the flue gas outlet temperature decreased by 140 K. In addition, a dynamic combustion BP neural network model with the movement of the grate under rated conditions was constructed, with the MSE (Mean Squared Error) being 1.629%. The model can learn data characteristics well and has a good prediction effect. This study provides a scientific basis for optimizing the operating parameters of municipal solid waste incinerators, helps to optimize the incineration process, and is of great significance to the thermal treatment of MSW....
The aim of this study was to investigate the influence of operational and design parameters on the conveying efficiency and material layer stability of air slides and to optimize the parameters of the XZ200 air slide. A gas–solid coupled simulation of the conveying process was conducted using ANSYS v2023 and Rocky v23R1 software. Three key variables—inclination angle, input air velocity, and permeable layer porosity—were analyzed to evaluate their effects on wheat flour conveying efficiency and layer stability. Orthogonal experiments and matrix analysis were applied to comprehensively assess the numerical simulation results. The findings reveal that the conveying ratio is positively correlated with input air velocity and inclination angle but negatively correlated with permeable layer porosity. Meanwhile, material layer fluctuation and stability increase with inclination angle but decrease with higher porosity. Through orthogonal testing and matrix analysis, the optimal parameter combination was determined as follows: input air velocity of 1.8 m/s, porosity of 37.84%, inclination angle of 6°, conveying ratio of 96.52%, and material layer fluctuation of 4.39 mm. This study provides a reference methodology for gas–solid coupled simulation in air slide design and offers practical guidance for parameter optimization in air slide systems....
Loading....